Identification of a Key Amino Acid of LuxS Involved in AI-2 Production in Campylobacter jejuni
نویسندگان
چکیده
Autoinducer-2 (AI-2) mediated quorum sensing has been associated with the expression of virulence factors in a number of pathogenic organisms and has been demonstrated to play a role in motility and cytolethal distending toxin (cdt) production in Campylobacter jejuni. We have initiated the work to determine the molecular basis of AI-2 synthesis and the biological functions of quorum sensing in C. jejuni. In this work, two naturally occurring variants of C. jejuni 81116 were identified, one producing high-levels of AI-2 while the other is defective in AI-2 synthesis. Sequence analysis revealed a G92D mutation in the luxS gene of the defective variant. Complementation of the AI-2(-) variant with a plasmid encoded copy of the wild-type luxS gene or reversion of the G92D mutation by site-directed mutagenesis fully restored AI-2 production by the variant. These results indicate that the G92D mutation alone is responsible for the loss of AI-2 activity in C. jejuni. Kinetic analyses showed that the G92D LuxS has a ∼100-fold reduced catalytic activity relative to the wild-type enzyme. Findings from this study identify a previously undescribed amino acid that is essential for AI-2 production by LuxS and provide a unique isogenic pair of naturally occurring variants for us to dissect the functions of AI-2 mediated quorum sensing in Campylobacter.
منابع مشابه
Quorum sensing in Campylobacter jejuni: detection of a luxS encoded signalling molecule.
The expression of a wide variety of physiological functions in many bacterial species is modulated by quorum sensing, a population-dependent signalling mechanism that involves the production and detection of extracellular signalling molecules. The genome sequence of Campylobacter jejuni NCTC 11168 contains a gene encoding an orthologue of LuxS, which is required for autoinducer-2 (AI-2) product...
متن کاملAutoinducer-2 production in Campylobacter jejuni contributes to chicken colonization.
Inactivation of luxS, encoding an AI-2 biosynthesis enzyme, in Campylobacter jejuni strain 81-176 significantly reduced colonization of the chick lower gastrointestinal tract, chemotaxis toward organic acids, and in vitro adherence to LMH chicken hepatoma cells. Thus, AI-2 production in C. jejuni contributes to host colonization and interactions with epithelial cells.
متن کاملPhenotypes of Campylobacter jejuni luxS Mutants Are Depending on Strain Background, Kind of Mutation and Experimental Conditions
Since the discovery that Campylobacter (C.) jejuni produces Autoinducer 2 (AI-2), various studies have been conducted to explore the function and role of AI-2 in C. jejuni. However, the interpretation of these analyses has been complicated by differences in strain backgrounds, kind of mutation and culture conditions used. Furthermore, all research on AI-2 dependent phenotypes has been conducted...
متن کاملLuxS and quorum-sensing in Campylobacter
Several intercellular bacterial communication mechanisms have been identified in a broad range of bacterial species. These systems, collectively termed quorum-sensing systems, have been demonstrated to play significant roles in a variety of bacterial processes including motility, biofilm formation, expression of virulence genes, and animal colonization. Campylobacter jejuni is known to possess ...
متن کاملCrystal Structure and Identification of Two Key Amino Acids Involved in AI-2 Production and Biofilm Formation in Streptococcus suis LuxS
Streptococcus suis has emerged as an important zoonotic pathogen that causes meningitis, arthritis, septicemia and even sudden death in pigs and humans. Quorum sensing is the signaling network for cell-to-cell communication that bacterial cells can use to monitor their own population density through production and exchange of signal molecules. S-Ribosylhomocysteinase (LuxS) is the key enzyme in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2011